Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
JACC Clin Electrophysiol ; 10(4): 775-789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597855

ABSTRACT

Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.


Subject(s)
Aging , Artificial Intelligence , Electrocardiography , Aged , Humans , Aging/physiology , Deep Learning
2.
Heart Rhythm O2 ; 5(3): 158-167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38560372

ABSTRACT

Background: Cardiac implantable electronic devices (CIEDs), such as permanent pacemakers, implantable cardioverter-defibrillators, and cardiac resynchronization therapy devices, alleviate morbidity and mortality in various diseases. There is a paucity of real-world data on CIED complications and trends. Objectives: We sought to describe trends in noninfectious CIED complications over the past 3 decades in Olmsted County. Methods: The Rochester Epidemiology Project is a medical records linkage system comprising records of over 500,000 residents of Olmsted County from 1966 to present. CIED implantations between 1988 and 2018 were determined. Trends in noninfectious complications within 30 days of implantation were analyzed. Results: A total of 157 (6.2%) of 2536 patients who received CIED experienced device complications. A total of 2.7% of the implants had major complications requiring intervention. Lead dislodgement was the most common (2.8%), followed by hematoma (1.7%). Complications went up from 1988 to 2005, and then showed a downtrend until 2018, driven by a decline in hematomas in the last decade (P < .01). Those with complications were more likely to have prosthetic valves. Obesity appeared to have a protective effect in a multivariate regression model. The mean Charlson comorbidity index has trended up over the 30 years. Conclusion: Our study describes a real-world trend of CIED complications over 3 decades. Lead dislodgements and hematomas were the most common complications. Complications have declined over the last decade due to safer practices and a better understanding of anticoagulant management.

3.
Heart Rhythm O2 ; 5(3): 150-157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38560374

ABSTRACT

Background: The outcomes of left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP) in patients with heart failure remain to be learned. Objective: The objective of this study was to assess the echocardiographic and clinical outcomes of LBBP, LVSP, and deep septal pacing (DSP). Methods: This retrospective study included patients who met the criteria for cardiac resynchronization therapy (CRT) and underwent attempted LBBP in 5 Mayo centers. Clinical, electrocardiographic, and echocardiographic data were collected at baseline and follow-up. Results: A total of 91 consecutive patients were included in the study. A total of 52 patients had LBBP, 25 had LVSP, and 14 had DSP. The median follow-up duration was 307 (interquartile range 208, 508) days. There was significant left ventricular ejection fraction (LVEF) improvement in the LBBP and LVSP groups (from 35.9 ± 8.5% to 46.9 ± 10.0%, P < .001 in the LBBP group; from 33.1 ± 7.5% to 41.8 ± 10.8%, P < .001 in the LVSP group) but not in the DSP group. A unipolar paced right bundle branch block morphology during the procedure in lead V1 was associated with higher odds of CRT response. There was no significant difference in heart failure hospitalization and all-cause deaths between the LBBP and LVSP groups. The rate of heart failure hospitalization and all-cause deaths were increased in the DSP group compared with the LBBP group (hazard ratio 5.10, 95% confidence interval 1.14-22.78, P = .033; and hazard ratio 7.83, 95% confidence interval 1.38-44.32, P = .020, respectively). Conclusion: In patients undergoing CRT, LVSP had comparable CRT outcomes compared with LBBP.

4.
Transplantation ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557657

ABSTRACT

BACKGROUND: Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative electrocardiograms (ECGs) in forecasting long-term mortality following KT. METHODS: We analyzed preoperative ECGs from KT recipients at three Mayo Clinic sites (Minnesota, Florida, and Arizona) between January 1, 2006, and July 30, 2021. The study involved 6 validated AI algorithms, each trained to predict future development of atrial fibrillation, aortic stenosis, low ejection fraction, hypertrophic cardiomyopathy, amyloid heart disease, and biological age. These algorithms' outputs based on a single preoperative ECG were correlated with patient mortality data. RESULTS: Among 6504 KT recipients included in the study, 1764 (27.1%) died within a median follow-up of 5.7 y (interquartile range: 3.00-9.29 y). All AI-ECG algorithms were independently associated with long-term all-cause mortality (P < 0.001). Notably, few patients had a clinical cardiac diagnosis at the time of transplant, indicating that AI-ECG scores were predictive even in asymptomatic patients. When adjusted for multiple clinical factors such as recipient age, diabetes, and pretransplant dialysis, AI algorithms for atrial fibrillation and aortic stenosis remained independently associated with long-term mortality. These algorithms also improved the C-statistic for predicting overall (C = 0.74) and cardiac-related deaths (C = 0.751). CONCLUSIONS: The findings suggest that AI-enabled preoperative ECG analysis can be a valuable tool in predicting long-term mortality following KT and could aid in identifying patients who may benefit from enhanced cardiac monitoring because of increased risk.

5.
Article in English | MEDLINE | ID: mdl-38583090

ABSTRACT

BACKGROUND: Left bundle branch block (LBBB) induced cardiomyopathy is an increasingly recognized disease entity.  However, no clinical testing has been shown to be able to predict such an occurrence. CASE REPORT: A 70-year-old male with a prior history of LBBB with preserved ejection fraction (EF) and no other known cardiovascular conditions presented with presyncope, high-grade AV block, and heart failure with reduced EF (36%). His coronary angiogram was negative for any obstructive disease. No other known etiologies for cardiomyopathy were identified. Artificial intelligence-enabled ECGs performed 6 years prior to clinical presentation consistently predicted a high probability (up to 91%) of low EF. The patient successfully underwent left bundle branch area (LBBA) pacing with correction of the underlying LBBB. Subsequent AI ECGs showed a large drop in the probability of low EF immediately after LBBA pacing to 47% and then to 3% 2 months post procedure. His heart failure symptoms markedly improved and EF normalized to 54% at the same time. CONCLUSIONS: Artificial intelligence-enabled ECGS may help identify patients who are at risk of developing LBBB-induced cardiomyopathy and predict the response to LBBA pacing.

7.
J Cardiovasc Electrophysiol ; 35(5): 1041-1045, 2024 May.
Article in English | MEDLINE | ID: mdl-38462703

ABSTRACT

INTRODUCTION: Transsubclavian venous implantation of the Aveir leadless cardiac pacemaker (LCP) has not been previously reported. METHODS AND RESULTS: Three cases of transsubclavian implantation of the Aveir LCP are reported. Two cases were postbilateral orthotopic lung transplant, without appropriate femoral or jugular access due to recent ECMO cannulation and jugular central venous catheters. In one case, there was strong patient preference for same-day discharge. Stability testing confirmed adequate fixation and electrical testing confirmed stable parameters in all cases. All patients tolerated the procedure well without significant immediate complications. CONCLUSIONS: We demonstrate the feasibility of transsubclavian implantation of the Aveir LCP.


Subject(s)
Cardiac Pacing, Artificial , Jugular Veins , Pacemaker, Artificial , Humans , Male , Middle Aged , Jugular Veins/surgery , Female , Aged , Treatment Outcome , Equipment Design , Prosthesis Implantation/instrumentation , Prosthesis Implantation/adverse effects
8.
Eur Heart J Digit Health ; 5(2): 192-194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505482

ABSTRACT

Aims: ECG abnormalities are often the first signs of arrhythmogenic right ventricular cardiomyopathy (ARVC) and we hypothesized that an artificial intelligence (AI)-enhanced ECG could help identify patients with ARVC and serve as a valuable disease-detection tool. Methods and results: We created a convolutional neural network to detect ARVC using a 12-lead ECG. All patients with ARVC who met the 2010 task force criteria and had disease-causative genetic variants were included. All case ECGs were randomly assigned in an 8:1:1 ratio into training, validation, and testing groups. The case ECGs were age- and sex-matched with control ECGs at our institution in a 1:100 ratio. Seventy-seven patients (51% male; mean age 47.2 ± 19.9), including 56 patients with PKP2, 7 with DSG2, 6 with DSC2, 6 with DSP, and 2 with JUP were included. The model was trained using 61 case ECGs and 5009 control ECGs; validated with 7 case ECGs and 678 control ECGs and tested in 22 case ECGs and 1256 control ECGs. The sensitivity, specificity, positive and negative predictive values of the model were 77.3, 62.9, 3.32, and 99.4%, respectively. The area under the curve for rhythm ECG and median beat ECG was 0.75 and 0.76, respectively. Conclusion: Our study found that the model performed well in excluding ARVC and supports the concept that the AI ECG can serve as a biomarker for ARVC if a larger cohort were available for network training. A multicentre study including patients with ARVC from other centres would be the next step in refining, testing, and validating this algorithm.

9.
Circulation ; 149(14): e1028-e1050, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38415358

ABSTRACT

A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence and other advanced analytical tools to transform health care delivery. The American Heart Association supports the creation of tools and services that would further the science and practice of precision medicine by enabling more precise approaches to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission, focusing on how digital tools and, in particular, artificial intelligence may provide clinical and mechanistic insights, address bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for interested stakeholders.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Stroke , United States , Humans , Artificial Intelligence , American Heart Association , Cardiovascular Diseases/therapy , Cardiovascular Diseases/prevention & control , Stroke/diagnosis , Stroke/prevention & control
10.
Circulation ; 149(6): 411-413, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38315763
11.
Circ Arrhythm Electrophysiol ; 17(2): e012377, 2024 02.
Article in English | MEDLINE | ID: mdl-38288627

ABSTRACT

BACKGROUND: The incidence and prognosis of right bundle branch block (RBBB) following transcatheter aortic valve replacement (TAVR) are unknown. Hence, we sought to characterize the incidence of post-TAVR RBBB and determine associated risks of permanent pacemaker (PPM) implantation and mortality. METHODS: All patients 18 years and above without preexisting RBBB or PPM who underwent TAVR at US Mayo Clinic sites and Mayo Clinic Health Systems from June 2010 to May 2021 were evaluated. Post-TAVR RBBB was defined as new-onset RBBB in the postimplantation period. The risks of PPM implantation (within 90 days) and mortality following TAVR were compared for patients with and without post-TAVR RBBB using Kaplan-Meier analysis and Cox proportional hazards modeling. The risks of PPM implantation (within 90 days) and mortality following TAVR were compared for patients with and without post-TAVR RBBB using Kaplan-Meier analysis and Cox proportional hazards modeling. RESULTS: Of 1992 patients, 15 (0.75%) experienced new RBBB post-TAVR. There was a higher degree of valve oversizing among patients with new RBBB post-TAVR versus those without (17.9% versus 10.0%; P=0.034). Ten patients (66.7%) with post-TAVR RBBB experienced high-grade atrioventricular block and underwent PPM implantation (median 1 day; Q1, 0.2 and Q3, 4), compared with 268/1977 (13.6%) without RBBB. Following propensity score adjustment for covariates (age, sex, balloon-expandable valve, annulus diameter, and valve oversizing), post-TAVR RBBB was significantly associated with PPM implantation (hazard ratio, 8.36 [95% CI, 4.19-16.7]; P<0.001). No statistically significant increase in mortality was seen with post-TAVR RBBB (hazard ratio, 0.83 [95% CI, 0.33-2.11]; P=0.69), adjusting for age and sex. CONCLUSIONS: Although infrequent, post-TAVR RBBB was associated with elevated PPM implantation risk. The mechanisms for its development and its clinical prognosis require further study.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Pacemaker, Artificial , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Bundle-Branch Block/diagnosis , Bundle-Branch Block/epidemiology , Bundle-Branch Block/etiology , Aortic Valve Stenosis/surgery , Incidence , Cardiac Pacing, Artificial/adverse effects , Treatment Outcome , Risk Factors , Aortic Valve/surgery
12.
NPJ Digit Med ; 7(1): 4, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38182738

ABSTRACT

Assessment of left ventricular diastolic function plays a major role in the diagnosis and prognosis of cardiac diseases, including heart failure with preserved ejection fraction. We aimed to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify echocardiographically determined diastolic dysfunction and increased filling pressure. We trained, validated, and tested an AI-enabled ECG in 98,736, 21,963, and 98,763 patients, respectively, who had an ECG and echocardiographic diastolic function assessment within 14 days with no exclusion criteria. It was also tested in 55,248 patients with indeterminate diastolic function by echocardiography. The model was evaluated using the area under the curve (AUC) of the receiver operating characteristic curve, and its prognostic performance was compared to echocardiography. The AUC for detecting increased filling pressure was 0.911. The AUCs to identify diastolic dysfunction grades ≥1, ≥2, and 3 were 0.847, 0.911, and 0.943, respectively. During a median follow-up of 5.9 years, 20,223 (20.5%) died. Patients with increased filling pressure predicted by AI-ECG had higher mortality than those with normal filling pressure, after adjusting for age, sex, and comorbidities in the test group (hazard ratio (HR) 1.7, 95% CI 1.645-1.757) similar to echocardiography and in the indeterminate group (HR 1.34, 95% CI 1.298-1.383). An AI-enabled ECG identifies increased filling pressure and diastolic function grades with a good prognostic value similar to echocardiography. AI-ECG is a simple and promising tool to enhance the detection of diseases associated with diastolic dysfunction and increased diastolic filling pressure.

14.
Am Heart J ; 267: 62-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913853

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is associated with increased risks of stroke and dementia. Early diagnosis and treatment could reduce the disease burden, but AF is often undiagnosed. An artificial intelligence (AI) algorithm has been shown to identify patients with previously unrecognized AF; however, monitoring these high-risk patients has been challenging. Consumer wearable devices could be an alternative to enable long-term follow-up. OBJECTIVES: To test whether Apple Watch, used as a long-term monitoring device, can enable early diagnosis of AF in patients who were identified as having high risk based on AI-ECG. DESIGN: The Realtime diagnosis from Electrocardiogram (ECG) Artificial Intelligence (AI)-Guided Screening for Atrial Fibrillation (AF) with Long Follow-up (REGAL) study is a pragmatic trial that will accrue up to 2,000 older adults with a high likelihood of unrecognized AF determined by AI-ECG to reach our target of 1,420 completed participants. Participants will be 1:1 randomized to intervention or control and will be followed up for 2 years. Patients in the intervention arm will receive or use their existing Apple Watch and iPhone and record a 30-second ECG using the watch routinely or if an abnormal heart rate notification is prompted. The primary outcome is newly diagnosed AF. Secondary outcomes include changes in cognitive function, stroke, major bleeding, and all-cause mortality. The trial will utilize a pragmatic, digitally-enabled, decentralized design to allow patients to consent and receive follow-up remotely without traveling to the study sites. SUMMARY: The REGAL trial will examine whether a consumer wearable device can serve as a long-term monitoring approach in older adults to detect AF and prevent cognitive function decline. If successful, the approach could have significant implications on how future clinical practice can leverage consumer devices for early diagnosis and disease prevention. CLINICALTRIALS: GOV: : NCT05923359.


Subject(s)
Atrial Fibrillation , Stroke , Aged , Humans , Artificial Intelligence , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Electrocardiography , Follow-Up Studies , Stroke/etiology , Stroke/prevention & control , Pragmatic Clinical Trials as Topic , Randomized Controlled Trials as Topic
15.
JACC Adv ; 2(8)2023 Oct.
Article in English | MEDLINE | ID: mdl-38076758

ABSTRACT

BACKGROUND: Artificial intelligence (AI) applied to 12-lead electrocardiographs (ECGs) can detect hypertrophic cardiomyopathy (HCM). OBJECTIVES: The purpose of this study was to determine if AI-enhanced ECG (AI-ECG) can track longitudinal therapeutic response and changes in cardiac structure, function, or hemodynamics in obstructive HCM during mavacamten treatment. METHODS: We applied 2 independently developed AI-ECG algorithms (University of California-San Francisco and Mayo Clinic) to serial ECGs (n = 216) from the phase 2 PIONEER-OLE trial of mavacamten for symptomatic obstructive HCM (n = 13 patients, mean age 57.8 years, 69.2% male). Control ECGs from 2,600 age- and sex-matched individuals without HCM were obtained. AI-ECG output was correlated longitudinally to echocardiographic and laboratory metrics of mavacamten treatment response. RESULTS: In the validation cohorts, both algorithms exhibited similar performance for HCM diagnosis, and exhibited mean HCM score decreases during mavacamten treatment: patient-level score reduction ranged from approximately 0.80 to 0.45 for Mayo and 0.70 to 0.35 for USCF algorithms; 11 of 13 patients demonstrated absolute score reduction from start to end of follow-up for both algorithms. HCM scores were significantly associated with other HCM-relevant parameters, including left ventricular outflow tract gradient at rest, postexercise, and with Valsalva, and NT-proBNP level, independent of age and sex (all P < 0.01). For both algorithms, the strongest longitudinal correlation was between AI-ECG HCM score and left ventricular outflow tract gradient postexercise (slope estimate: University of California-San Francisco 0.70 [95% CI: 0.45-0.96], P < 0.0001; Mayo 0.40 [95% CI: 0.11-0.68], P = 0.007). CONCLUSIONS: AI-ECG analysis longitudinally correlated with changes in echocardiographic and laboratory markers during mavacamten treatment in obstructive HCM. These results provide early evidence for a potential paradigm for monitoring HCM therapeutic response.

16.
EClinicalMedicine ; 65: 102259, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38106563

ABSTRACT

Background: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide, driven primarily by coronary artery disease (CAD). ASCVD risk estimators such as the pooled cohort equations (PCE) facilitate risk stratification and primary prevention of ASCVD but their accuracy is still suboptimal. Methods: Using deep electronic health record data from 7,116,209 patients seen at 70+ hospitals and clinics across 5 states in the USA, we developed an artificial intelligence-based electrocardiogram analysis tool (ECG-AI) to detect CAD and assessed the additive value of ECG-AI-based ASCVD risk stratification to the PCE. We created independent ECG-AI models using separate neural networks including subjects without known history of ASCVD, to identify coronary artery calcium (CAC) score ≥300 Agatston units by computed tomography, obstructive CAD by angiography or procedural intervention, and regional left ventricular akinesis in ≥1 segment by echocardiogram, as a reflection of possible prior myocardial infarction (MI). These were used to assess the utility of ECG-AI-based ASCVD risk stratification in a retrospective observational study consisting of patients with PCE scores and no prior ASCVD. The study period covered all available digitized EHR data, with the first available ECG in 1987 and the last in February 2023. Findings: ECG-AI for identifying CAC ≥300, obstructive CAD, and regional akinesis achieved area under the receiver operating characteristic (AUROC) values of 0.88, 0.85, and 0.94, respectively. An ensembled ECG-AI identified 3, 5, and 10-year risk for acute coronary events and mortality independently and additively to PCE. Hazard ratios for acute coronary events over 3-years in patients without ASCVD that tested positive on 1, 2, or 3 versus 0 disease-specific ECG-AI models at cohort entry were 2.41 (2.14-2.71), 4.23 (3.74-4.78), and 11.75 (10.2-13.52), respectively. Similar stratification was observed in cohorts stratified by PCE or age. Interpretation: ECG-AI has potential to address unmet need for accessible risk stratification in patients in whom PCE under, over, or insufficiently estimates ASCVD risk, and in whom risk assessment over time periods shorter than 10 years is desired. Funding: Anumana.

18.
Am Heart J ; 266: 14-24, 2023 12.
Article in English | MEDLINE | ID: mdl-37567353

ABSTRACT

BACKGROUND: There has been an increasing uptake of transcatheter left atrial appendage occlusion (LAAO) for stroke reduction in atrial fibrillation. OBJECTIVES: To investigate the perceptions and approaches among a nationally representative sample of physicians. METHODS: Using the American Medical Association Physician Masterfile, we selected a random sample of 500 physicians from each of the specialties: general cardiologists, interventional cardiologists, electrophysiologists, and vascular neurologists. The participants received the survey by mail up to three times from November 9, 2021 to January 14, 2022. In addition to the questions about experiences, perceptions, and approaches, physicians were randomly assigned to 1 of the 4 versions of a patient vignette: white man, white woman, black man, and black woman, to investigate potential bias in decision-making. RESULTS: The top three reasons for considering LAAO were: a history of intracranial bleeding (94.3%), a history of major extracranial bleeding (91.8%), and gastrointestinal lesions (59.0%), whereas the top three reasons for withholding LAAO were: other indications for long-term oral anticoagulation (87.7%), a low bleeding risk (77.0%), and a low stroke risk (65.6%). For the reasons limiting recommendations for LAAO, 59.8% mentioned procedural risks, 42.6% mentioned "limiting efficacy data comparing LAAO to NOAC" and 32.8% mentioned "limited safety data comparing LAAO to NOAC." There was no difference in physicians' decision-making by patients' race, gender, or the concordance between patients' and physicians' race or gender. CONCLUSIONS: In the first U.S. national physician survey of LAAO, individual physicians' perspectives varied greatly, which provided information that will help customize future educational activities for different audiences. CONDENSED ABSTRACT: Although diverse practice patterns of LAAO have been documented, little is known about the reasoning or perceptions that drive these variations. Unlike prior surveys that were directed to Centers that performed LAAO, the current survey obtained insights from individual physicians, not only those who perform the procedures (interventional cardiologists and electrophysiologists) but also those who are closely involved in the decision-making and referral process (general cardiologists and vascular neurologists). The findings identify key evidence gaps and help prioritize future studies to establish a consistent and evidence-based best practice for AF stroke prevention.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Physicians , Stroke , Female , Humans , Male , Anticoagulants , Atrial Appendage/surgery , Atrial Fibrillation/complications , Atrial Fibrillation/surgery , Stroke/etiology , Stroke/prevention & control , Treatment Outcome
19.
J Electrocardiol ; 81: 286-291, 2023.
Article in English | MEDLINE | ID: mdl-37599145

ABSTRACT

INTRODUCTION: A 12­lead electrocardiography (ECG)-based convolutional neural network (CNN) model can detect hypertrophic cardiomyopathy (HCM). However, since these models do not rely on discrete measurements as inputs, it is not apparent what drives their performance. We hypothesized that saliency maps could be used to visually identify ECG segments that contribute to a CNN's robust classification of HCM. METHODS: We derived a new one­lead (lead I) CNN model based on median beats using the same methodology and cohort used for the original 12­lead CNN model (3047 patients with HCM, and 63,926 sex- and age-matched non-HCM controls). One­lead, median-beat saliency maps were generated and visually evaluated in an independent cohort of 100 patients with a diagnosis of HCM and a high artificial intelligence (AI)-ECG-HCM probability score to determine which ECG segments contributed to the model's detection of HCM. RESULTS: The one­lead, median-beat CNN had an AUC of 0.90 (95% CI 0.89-0.92) for HCM detection, similar to the original 12­lead ECG model. In the independent HCM cohort (n = 100), saliency maps highlighted the ST-T segment in 92 ECGs, the atrial depolarization segment in 12 ECGs, and the QRS complex in 5 ECGs. CONCLUSIONS: Saliency maps of a one­lead, median-beat-based CNN model identified perturbations in ventricular repolarization as the main region of interest in detecting HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Electrocardiography , Humans , Electrocardiography/methods , Artificial Intelligence , Cardiomyopathy, Hypertrophic/diagnosis , Neural Networks, Computer , Diagnosis, Computer-Assisted/methods
20.
Heart Rhythm O2 ; 4(7): 448-456, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37520021

ABSTRACT

Background: The subcutaneous implantable cardioverter-defibrillator (S-ICD) has demonstrated safety and efficacy for the treatment of malignant ventricular arrhythmias. However, a limitation of the S-ICD lies in the inability to either pace-terminate ventricular tachycardia or provide prolonged bradycardia pacing support. Objective: The rationale and design of a prospective, single-arm, multinational trial of an intercommunicative leadless pacing system integrated with the S-ICD will be presented. Methods: A technical description of the modular cardiac rhythm management (mCRM) system (EMPOWER leadless pacemaker and EMBLEM S-ICD) and the implantation procedure is provided. MODULAR ATP (Effectiveness of the EMPOWER™ Modular Pacing System and EMBLEM™ Subcutaneous ICD to Communicate Antitachycardia Pacing) is a multicenter, international trial enrolling up to 300 patients at risk of sudden cardiac death at up to 60 centers trial design. The safety endpoint of freedom from major complications related to the mCRM system or implantation procedure at 6 months and 2 years are significantly higher than 86% and 81%, respectively, and all-cause survival is significantly >85% at 2 years. Results: Efficacy endpoints are that at 6 months mCRM communication success is significantly higher than 88% and the percentage of subjects with low and stable thresholds is significantly higher than 80%. Substudies to evaluate rate-responsive features and performance of the pacing module are also described. Conclusion: The MODULAR ATP global clinical trial will prospectively test the safety and efficacy of the first intercommunicating leadless pacing system with the S-ICD. This trial will allow for robust validation of device-device communication, pacing performance, rate responsiveness, and system safety.

SELECTION OF CITATIONS
SEARCH DETAIL
...